Protective effect of Empagliflozin on αKlotho/Autophagy protein LC3 in diabetic retinopathy: Evidence from diabetic mice model

Nakhoul Nakhoul1,2, Ertracht Offir3, Igbariye Anas4, Irit Mann5, Hagar Tadmor5, Ranin Saed2,6, Nakhoul Farid2,3, Atar Shaul2,3,7

1The Ophthalmology Division, Baruch Padeh Medical Center, Poriya, 2Azrieli Faculty of Medicine, Safed, Bar-Ilan University, 3Cardiovascular Laboratory, Medical Research Institute, Galilee Medical Center Nahariya, 4Rambam Medical Center, Haifa, 5Rappaport Institute, Faculty of Medicine, Israel Institute of Technology – The Technion, Haifa, 6Diabetes and Metabolism Lab, Baruch Padeh Poriya Medical Center, 7The Cardiology Department, Galilee Medical Center, Nahariya, Israel.

Background

Diabetic retinopathy (DR) is a leading cause of blindness, and its incidence is increasing worldwide. The serious proliferative DR type is characterized by an abnormal growth of small blood vessels in the eye due to hypoxia and synthesis of vascular endothelial growth factor (VEGF) disc neo-vascularization, vitreous hemorrhages, retinal detachment and blindness. Hyperglycemia triggers pro-inflammatory mediators, which activate oxidative stress and inflammatory signal. Beyond glycemic control, most DR therapies are effectuated late, when vision is already incurable. The proteins αKL and LC3 are involved in the protective pathway of autophagy. Both abundant in renal and retinas tissue, thus, may used as markers for autophagy.

Empagliflozin (EMPA) is a sodium-glucose cotransporter 2 inhibitors (SGLT2i) a anti-diabetes drug, which function at the kidney to inhibit glucose re-absorption. Lately, additional efficacies were attributed to this family of drugs.

Hypothesis

We hypothesize that αKlotho/Autophagy protein LC3 are involved in the DR progression and subsequent eye deterioration, and that EMPA will attenuate DR deleterious markers.

Material & Methods

BTBR mice with the ob/ob leptin-deficiency mutation that develops spontaneously severe T2DM and C57/BL mice (control) were used. EMPA was administrated to the T2DM mice via drinking water for 12 weeks. Finally, mice retinas were removed and subjected to further histological analysis: Immunohistochemistry and Immunofluorescence staining for αKL/LC3 protein expression level.

Results

Figure 1: Mice physiological parameters. A. mean weight, B. water intake, C. urine output, D. Urine protein excretion, E. Urine creatinine, F. Urine glucose level. * vs. C57/BL, $ vs. DM+EMPA, ** vs. one month, † vs. BL.

Figure 2: Representative immunofluorescence of αKL expression in retinal ganglionic cell layer (GCL), of A. C57BL/6 mice B. DM mice. C. DM+EMPA mice. Red αKL positive pixels, Blue- DAPI (nuclei).

Discussion & Conclusion

1. Our data suggested that αKL protein and the autophagy proteins LC3 are involved in the pathogenesis of DR. We suggested that αKL and the autophagy key protein LC3 modulators could probably be potential protective factors against retinopathy develops in T2DM patients.

2. The anti-aging protein αKL plays a critical role in retinal ganglionic cells function, especially the GCL. Our study revealed a significant decrease in retinal αKL protein expression in T2DM mice model, and restored by the new anti-diabetic EMPA treatment.

3. It appears that Klotho may be involved in several physiological processes such as chronic hyperglycemia in T2DM vascular complications.